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STIFFNESS PROBLEM IN MODELING WAVE FLOWS

OF HETEROGENEOUS MEDIA WITH A THREE-TEMPERATURE SCHEME

OF INTERPHASE HEAT AND MASS TRANSFER

UDC 518.517.0D. V. Sadin

The numerical modeling of wave flows of heterogeneous media with a three-temperature scheme of
interphase heat and mass transfer involves the problem of equation stiffness. A discrete model of
improved stability was developed to describe these processes. Test calculations of the interaction of a
shock wave with a bounded layer of a mixture of a gas and droplets assuming a discrete model over a
wide range of initial data showed that the stability conditions do not depend on the rate of interphase
interaction (C-stability).

Introduction. Designing new technologies and methods of protecting from intense shock-wave, thermal, and
vibrational actions using heterogeneous media requires in-depth study of the motion of mixtures undergoing phase
transitions with allowance for the temperature and velocity nonequilibrium of phases. Usually, these problems can
be solved only numerically on the basis of discrete models (difference schemes). Problems of numerically modeling
wave flows of heterogeneous media were studied in [1, 2] and others. Schemes for calculating gas wave flows with
solid particles and droplets were developed in [3, 4]. Mathematical modeling of wave flows of heterogeneous media is
characterized by a greater (e.g., than in gas-dynamic problems) number of equations of motion and closure relations,
which calls for more powerful computers. Therefore, development of economical methods for numerical solutions of
this class of problems seems especially important.

As shown in [5–7], in calculating gas filtration in a porous medium and wave flows of a mixture of a gas and
solid particles, in which interphase interactions (friction and heat exchange) are rather intense, the step in time
must be significantly restricted. It should be noted that the Courant criterion (see e.g., [6]) imposes less rigorous
constraints on the admissible step of integration.

A similar problem arises in numerical integration of ordinary differential equations of some types by classical
methods [8], where the time scales of some components of the solution vector differ significantly. For this type of
ordinary differential equations, the term of “stiffness” was introduced and implicit methods were shown to be more
effective for their numerical solution.

In the above sense, a wide class of problems of the motion of heterogeneous media is described by stiff partial
differential equations, e.g., in cases where the characteristic times of equalization of phase velocities and temperatures
are significantly smaller than the time of perturbation propagation at the distance equal to the characteristic grid
size. Discrete models with explicit approximation of space derivatives and implicit allowance for source terms [5–7]
enables a severalfold increase in the stability factor. For some classes of flows, the stability factor can be increased
by an order of magnitude and more, which is supported by numerous calculations for various flows of mixtures of
a gas and solid particles. An important property of such discrete models is C-stability (the stability conditions for
a scheme over a wide range of initial data are determined by the Courant criterion and are independent of the rate
of interphase interactions). This property is especially important in solving multidimensional problems, where the
point of calculation domain at which the solution becomes unstable is not known beforehand. Thus, for example,
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in calculations using a scheme that is not C-stable, instability can be manifested after several time steps due to a
sharp increase in interphase-transfer rate, thus necessitating repeated calculations using smaller time steps.

The stiffness problem also arises in numerical modeling of wave flows of a gas–droplet mixture with phase
transitions, in particular using a three-temperature scheme of interphase heat and mass transfer [1], in which the
temperature field in the vicinity of a droplet is characterized by the temperatures of the gas T1, the droplet T2, and
the interface TΣ. The heat fluxes per unit volume from the drop surface to the gas of the mixture and the fluid are
given by the expression

QΣi = 1.5(α2/r
2)Nuiλi(TΣ − Ti), i = 1, 2. (1)

Here αi are the volume fractions of the phases, r is the droplet radius, λi is the thermal conductivity of the ith
phase, and Nui is the Nusselt number (Nu2 = 10 [1], and the value of Nu1 is obtained experimentally [9]). The
mass-transfer rate per unit volume J12 is determined from the relation

J12l(pv) = QΣ1 +QΣ2, (2)

where l(pv) is the heat of evaporation and pv is the partial vapor pressure.
In calculations using a three-temperature scheme, the mechanism of the instability development can be

explained as follows. Let the droplets evaporate (J12 < 0) at a certain time step τ , which brings about an increase
in vapor density ρ1v and partial pressure pv. On the assumption of phase equilibrium at the interface TΣ = Ts(pv),
the average temperature at it also increases. Therefore, if the value of τ is not small, then, according to (1) and (2),
evaporation gives way to condensation, after which the parameter-fluctuation amplitudes become unbounded.

This paper is an attempt to construct a C-stable noniterative discrete model for the wave motion of a gas–
droplet mixture allowing for the difference in phase velocity using a three-temperature scheme of heat and mass
transfer and the stiffness concept.

Governing Equations. Let us consider a two-phase disperse mixture of droplets with a two-component
carrier phase (inert gas and vapor). Let us adopt the well-known assumptions used in the mechanics of collisionless
monodisperse mixtures [1]: the droplet sizes are many times larger than the molecular-kinetic sizes and many
times smaller than the distances over which the averaged mixture parameters change significantly; the mixture is
monodisperse, the chaotic and internal motion (rotation and deformation) of disperse particles can be neglected;
no processes of collision, grinding, coalescence, and formation of new droplets take place; the viscosity and thermal
conductivity of the phases are manifested only in the processes of interphase interaction; the condensed phase is
undeformed; the components of the carrier phase (inert gas and vapor) do not enter chemical reactions among
each other and satisfy the additivity conditions; gravitational forces are neglected. With allowance for the earlier
assumptions and inertia effects for the flow around the droplets, the equations of conservation of mass, momentum,
and energy of the phases and the mixture are written as

∂ρ1g

∂t
+∇ · (ρ1gv1) = 0,

∂ρ1v

∂t
+∇ · (ρ1vv1) = −J12,

∂ρ2

∂t
+∇ · (ρ2v2) = J12,

∂ρ2r

∂t
+∇ · (ρ2rv2) =

4
3
rJ12,

∂ρ1v1

∂t
+∇(ρ1v1v1) = −β1∇p+ J12

(
β1w12 − β2

α2

2
ρ1

ρ2
w12 − v1

)
− α1β2Fµ,

∂ρ2v2

∂t
+∇(ρ2v2v2) = −(1− β1)∇p+ J12

(
(1− β1)w12 + β2

α2

2
ρ1

ρ2
w12 + v2

)
+ α1β2Fµ, (3)

∂ρ2u2

∂t
+∇ · (ρ2u2v2) = QΣ2 + J12u2Σ,

∂

∂t
(ρ1E1 + ρ2E2) +∇ · (ρ1E1v1 + ρ2E2v2) +∇ · (p(α1v1 + α2v2)) = 0,

β1 =
α1(2 + χmρ

0
1/ρ

0
2)

2 + χm(α2 + α1ρ0
1/ρ

0
2)
, β2 =

2
2 + χm(α2 + α1ρ0

1/ρ
0
2)
.

Here the subscripts “g,” and “v” denote the parameters of the inert and vapor components of the gas, respectively,
the subscript Σ denotes the parameters of the surface phase (Σ-phase), Ei and ui are the specific total energy
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and internal energy of the ith phase, p is the pressure, Fµ is the rate of the viscous force interphase interaction,
and χm is coefficient that allows for the effect of non-uniqueness and non-sphericity of the droplets on the force of
attached masses.

The viscous friction force exerted by the gas on the condensed phase in a unit volume is specified as in [1]:

Fµ = 0.75
α2

r
Cµ

ρ0
1w12

2
w12

w12
, Cµ = Cµ(Re12, α2), Re12 =

2rρ0
1w12

µ1
, w12 = v1 − v2.

Here Re12 is the Reynolds number of the relative phase motion and Cµ is the empirically obtained [10, 11] friction
coefficient.

The system of conservation equations (3) is closed by the equations of state of calorifically perfect gas
components:

pg = ρ0
1gR1gT1, pv = ρ0

1vR1vT1, p = pg + pv,

ρ0
1 = ρ0

1g + ρ0
1v, k1g = ρ0

1g/ρ
0
1, k1v = ρ0

1v/ρ
0
1 (k1g + k1v = 1), (4)

u1 = k1gu1g + k1vu1v, λ1 = λ1(k1g, T1), ig = cg(T1 − T ∗) + i∗g, iv = cv(T1 − T ∗) + i∗v.

Here pg is the partial pressure of the inert gas, R1g and R1v are the constants of the gas components, ρ0
1g and ρ0

1v,
k1g and k1v, and u1g and u1v are the true densities, mass fractions, and internal energies of a unit mass of the
components, respectively, cg and cv are the heat capacities of the inert gas and vapor at constant pressure, and
ig is the enthalpy of the gas component; the superscript “∗” denotes fixed parameters. The enthalpy of the vapor
component iv is related to the enthalpy of the condensed phase il by the normalization condition

i∗v − i∗l = l(p∗v) + (cl − cv)(Ts(p∗v)− T ∗),

where cl is the heat capacity of the fluid.
Discrete Model. In developing a discrete model, we use splitting into physical processes [12], in which

all interphase interactions are calculated only in the first stage. As preliminary analysis shows, for the “rapid”
components of the solution, implicit allowance for the source terms is required.

In accordance with (3), the local change in vapor density is determined by the phase-transition rate in a
unit volume:

(ρ̃1v − ρk1v)/τ = −J̃12 (5)

(k is the time step number; tilde denotes the values calculated in the first stage). Using the heat- and mass-transfer
relations (1) and (2), Eq. (5) can be written as

ρ̃1v − ρk1v

τ
= − (αks1 + αks2)

l(pkv)
T̃S +

αks1
l(pkv)

T k1 +
αks2
l(pkv)

T k2 , αsi = 1.5
α2

r2
Nuiλi, (6)

where αsi are the coefficients of heat transfer between the Σ-phase and the ith phase in a unit volume.
For noniterative calculation of the vapor density in (6), the function Ts(pv) can be linearized as is done in [6]

for interphase friction:
T̃s = T ks +

(∂Ts
∂pv

)k
(p̃v − pkv). (7)

The temperature on the saturation line is usually represented as a polynomial T ks =
n∑
j=0

cj(pkv)j , hence

T̃s = c′0 + p̃v

n∑
j=1

c′j(p
k
v)j−1, c′0 = c0 −

n∑
j=1

(j − 1)cj(pkv)j , c′j = jcj .

Finally, with allowance for the equation of state for the vapor component (4), the relation for the preliminary
value of the vapor density (6) is written as

ρ̃1v =
(
ρk1v − τ

αks1+αks2
l(pkv)

c′0 + τ
( αks1
l(pkv)

T k1 +
αks2
l(pkv)

T k2

))/(
1 + τ

αks1+αks2
l(pkv)

RvT
k
1

αk1

n∑
j=1

c′j(p
k
v)j−1

)
.

Using the implicit method of calculating interphase interactions for other equations of system (3), in the first step
of calculation, we have

ρ̃1v =
(
ρk1v − τ

αks1+αks2
l(pkv)

c′0 + τ
( αks1
l(pkv)

T k1 +
αks2
l(pkv)

T k2

))/(
1 + τ

αks1+αks2
l(pkv)

RvT
k
1

αk1

n∑
j=1

c′j(p
k
v)j−1

)
.

288



Fig. 1 Fig. 2

Fig. 1. Profiles of gas pressure (curves 1) and partial vapor pressure (curves 2): solid curves refer to calculations
using the scheme (8), (9) and dashed curves refer to calculations using the scheme of [3].

Fig. 2. Temperature profiles for the gas (curves 1) and droplets (curves 2): solid curves refer to calculations using
the scheme (8), (9) and dashed curves refer to calculations using the scheme of [3].

(ρ̃1v − ρk1v)/τ = −J̃12, (ρ̃2 − ρk2)/τ = J̃12,

ρ̃2r̃ − ρk2rk

τ
=

4
3
J̃12r̃ for J̃12 < 0,

ρ̃2r̃ − ρk2rk

τ
=

4
3
J̃12r

k for J̃12 > 0,

ρ̃1ṽ1 − ρk1vk1
τ

= −βk1∇pk + Jk12

(
βk1w

k
12 − βk2

αk2
2
ρk1
ρk2
wk

12 − vk1
)
− αk1βk2 F̃µ(ṽ1 − vk2 ), (8)

ρ̃2ṽ2 − ρk2vk2
τ

= −(1− βk1 )∇pk + Jk12

(
(1− βk1 )wk

12 + βk2
αk2
2
ρk1
ρk2
wk

12 + vk2
)

+ αk1β
k
2 F̃µ(ṽ1 − vk2 ),

(ρ̃2ũ2 − ρk2uk2)/τ = Q̃Σ2(T̃s − T̃2) + J̃12u
k
2Σ, Ẽ2 = ũ2 + (ṽ2)2/2,

(ρ̃1Ẽ1 + 0.5ρ̃2ṽ2)− (ρk1E
k
1 + 0.5ρk2v

k
2 )

τ
= Q̃Σ1(T̃s − T̃1)− J̃12(l(pkv) + uk2Σ)−∇ · (pk(αk1v

k
1 + αk2v

k
2 )),

T̃2 = (ũ2 − u∗2)/c2 + T ∗, T̃1 = (Ẽ1 − ṽ2
1/2− k1vu

∗
1v − k1gu

∗
1g)/c1v + T ∗1 .

Here c1v is the heat capacity of the two-component gas in a constant volume.
In the second stage, the final values of the desired parameters are obtained with allowance for the fluxes of

masses, pulses, and energies of the phases through the cell boundaries (using a standard procedure), taking into
account their directions [12]:

(ρk+1
1g − ρk1g)/τ +∇ · (ρk1gṽ1) = 0, (ρk+1

1v − ρ̃1v)/τ +∇ · (ρ̃1gṽ1) = 0,

(ρk+1
2 − ρ̃2)/τ +∇ · (ρ̃2ṽ2) = 0, (ρk+1

2 rk+1 − ρ̃2r̃)/τ +∇ · (ρ̃2r̃ṽ2) = 0,

(ρk+1
1 vk+1

1 − ρ̃1ṽ1)/τ +∇(ρ̃1ṽ1ṽ1) = 0, (ρk+1
2 vk+1

2 − ρ̃2ṽ2)/τ +∇(ρ̃2ṽ2ṽ2) = 0, (9)

(ρk+1
2 uk+1

2 − ρ̃2ũ2)/τ +∇ · (ρ̃2ũ2ṽ2) = 0,

(ρk+1
1 Ek+1

1 + ρk+1
2 Ek+1

2 − (ρ̃1Ẽ1 + ρ̃2Ẽ2))/τ +∇ · (ρ̃1Ẽ1ṽ1 + ρ̃2Ẽ2ṽ2) = 0.

Test Calculations. The proposed scheme was tested by solving the one-dimensional problem of interaction
of a rectangular shock wave with a bounded layer of a mixture of air and water droplets which was in phase
equilibrium at the initial time.
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The initial data are as follows: incident wave Mach number 1 6 M 0 6 4, initial volume fraction of water
droplets in the layer α20 6 0.1, the initial droplet radius r0 > 10 µm, T10 = T20 = Ts0 = 293 K, and p0 = 105 Pa.
The properties of water and water vapor are taken from the tabulated data of [13] and approximated by fifth-degree
polynomials.

The calculations were carried out using a through-calculation scheme. In the case of ρ2 < 10−6 kg/m3 and
r < 10−9 m, calculations of interphase interactions which did not influence significantly accuracy were eliminated
from the algorithm to reduce the volume of computations. The uniform grid included 200 cells of size h 6 0.01 m.
Cell Nos. 81–120 contained a gas suspension layer with the parameters indicated above. At the left boundary,
boundary conditions were specified as the parameters of the incident shock wave, and at the right boundary, the
specified boundary conditions were “mild” (extrapolation of parameters inside the calculation domain). The time
step was chosen from the condition

τ = Kuh/max
∀j
|v1,j + a1,j | (Ku 6 1), (10)

where Ku is the Courant number, a1 is the velocity of sound in the gas, and j is the cell number.
As test calculations showed, within the range studied, the proposed discrete model (8), (9) is C-stable. The

stability factor depends only on the Courant criterion (10) and is independent of the rate of interphase interactions.
The Courant number for which the calculation is stable for the noniterative model (8), (9), is an order of magnitude
larger than the Courant number in the calculation scheme with explicit allowance for the interphase transfer [3].
For example, for M 0 = 2.5, α20 = 0.1, r0 = 10 µm, and h = 0.01 m, the scheme [3] is unstable in the range
0.07 6 Ku2 6 1. As analysis of the calculations shows, the instability is caused by significant fluctuations of the
interface temperature Ts at the front of the shock wave entering the layer and leads to an unbounded increase of
the solution. For Ku2 6 0.07, a solution is possible with bounded oscillations of large amplitude, which practically
vanish when Ku2 ' 0.02. The proposed discrete model (8), (9) provides for stable calculations for Ku1 = 1.

Figures 1 and 2 show the results of calculations using the scheme (8), (9) and the explicit scheme [3] at
Ku1 = 1, Ku2 = 0.02, and t = 0.004 sec. Decrease in the time step determined by Courant number Ku1 6 0.2 leads
to the practical coincidence of the both solutions.
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